12X LA6 D Page 1 of 4 January 2019 HOLLAND HOUSE • QUEENS ROAD • BARNET • EN5 4DJ • ENGLAND • TEL: +44 (0)20 8441 2024 • FAX: +44 (0)20 8449 0810 email: info@mbh.co.uk web: www.mbh.co.uk # CERTIFICATE OF ANALYSIS 12X LA6 (batch D) ## <u>Certified Reference Material Information</u> Type: LOW-ALLOY STEEL (WROUGHT) Form and Size: Disc ~40mm diameter Manufactured by: Polycast Ltd Certified and Supplied by: MBH Analytical Ltd ## **Assigned Values** #### Percentage element by weight | Element | С | Si | S | Р | Mn | Ni | Cr | |--------------------------|--------|-------|--------|--------|--------|--------|-------| | Value 1 | 0.0090 | 0.075 | 0.0057 | 0.0041 | 0.0867 | 0.0338 | 0.099 | | Uncertainty ² | 0.0013 | 0.003 | 0.0005 | 0.0006 | 0.0011 | 0.0010 | 0.002 | | Element | Мо | Cu | Co | Al | V | Zn | N | |--------------------------|--------|--------|--------|-------|--------|--------|--------| | Value 1 | 0.0110 | 0.0250 | 0.0051 | 0.174 | 0.0033 | 0.0067 | 0.0070 | | Uncertainty ² | 0.0006 | 0.0005 | 0.0003 | 0.007 | 0.0003 | 0.0010 | 0.0008 | ## **Definitions** - The certified values are the present best estimates of the true content for each element. Each value is a panel consensus, based on the averaged results of an interlaboratory testing programme, detailed on page 3. - The uncertainty values are generated from the 95% confidence interval derived from the wet analysis results, in combination with a statistical assessment of the homogeneity data, as described on page 2. ## **Certified by:** MBH ANALYTICAL LIMITED _____ on 7th January 2019 ## **Method of Preparation** This reference material was produced from commercial metals, with the minor and trace elements added as pure elements or master alloys. The discs are the product of one melt, cast into ingots of 100mm diameter, which were hotworked to final size. #### Sampling Samples for wet chemical analysis were taken from several positions within the batch. In addition, at least 10% of all discs were selected for homogeneity checking. ### **Homogeneity** The discs were checked for lateral segregation, and for local and batch homogeneity using an optical emission spectrometer. Using the combined data from each surface, standard deviation values were derived for each element as an indicator of any non-homogeneity (as determined for the specific sample size taken by the spectrometer). ## **Chemical Analysis** Analysis was carried out on millings taken from samples representative of the product. It was performed by a panel of laboratories mostly operating within the terms of EN ISO/IEC 17025, using documented standard reference methods and validated by appropriate reference materials. The individual values listed overpage are the average of each analyst's results. ## **Traceability** Much of the analytical work performed to assess this material has been carried out by laboratories with proven competence, as indicated by their accreditation to ISO 17025. It is an implicit requirement for this accreditation that analytical work should be performed with due traceability, via an unbroken chain of comparisons, each with stated uncertainty, to primary standards such as the mole, or to nationally- or internationally-recognised reference materials. Of the individual results herein, some have traceability (to the mole) via primary analytical methods. Some are traceable to substances of known stoichiometry. Most have traceability via commercial solutions. Furthermore, some results have additional traceability to NIST standards, as part of the analytical calibration or process control. #### **Estimation of Uncertainties** Each element certified has been analysed by several laboratories, and 95% half-width confidence intervals ($C_{(95\%)}$) for the resultant mean values have been derived by the method shown on page 3. As a separate exercise, the degree of non-homogeneity of the batch for each element has been quantified by a programme of non-destructive application testing, discussed above. The final certified uncertainty for each element has been derived by combining these two factors, using the square-root of the summed squares. #### <u>Usage</u> Intended use: With optical emission and X-ray fluorescence spectrometers. Recommended method of use: Steels are generally prepared by linishing, grinding, turning or milling. However, users are recommended to follow the calibration and sample preparation procedures specified by the relevant instrument manufacturer. Preparation should be the same for reference materials and the samples for test. For optical emission spectroscopy, a minimum of five consistent replicate analyses is recommended to provide the necessary sample size. Users are advised to check against possible bias between reference materials and production samples due to differences in metallurgical history, and be aware of possible inter-element effects. ## **Analytical Data** ### Percentage element by weight | Sample | С | Si | S | P | Mn | Ni | Cr | |---|--|--|--|--|--|--|--| | 1 | 0.0052 | 0.0695 | 0.0048 | 0.0028 | 0.0838 | 0.0313 | 0.0939 | | 2 | 0.0066 | 0.0698 | 0.0048 | 0.0029 | 0.0847 | 0.0315 | 0.0941 | | 3 | 0.0070 | 0.0699 | 0.0049 | 0.0032 | 0.0853 | 0.0322 | 0.0955 | | 4 | 0.0082 | 0.0706 | 0.0050 | 0.0038 | 0.0861 | 0.0323 | 0.0973 | | 5 | 0.0098 | 0.0744 | 0.0050 | 0.0038 | 0.0864 | 0.0327 | 0.0978 | | 6 | 0.0099 | 0.0761 | 0.0059 | 0.0040 | 0.0866 | 0.0332 | 0.0980 | | 7 | 0.0101 | 0.0761 | 0.0059 | 0.0041 | 0.0866 | 0.0333 | 0.0980 | | 8 | 0.0103
0.0105 | 0.0762 | 0.0062 | 0.0044 | 0.0868 | 0.0333
0.0350 | 0.0987 | | 9 | 0.0105 | 0.0771
0.0778 | 0.0063
0.0063 | 0.0046
0.0048 | 0.0878
0.0879 | 0.0350 | 0.0997
0.1006 | | 10
11 | 0.0109 | 0.0778 | 0.0063 | 0.0048 | 0.0879 | 0.0352 | 0.1000 | | 12 | 0.0112 | 0.0770 | 0.0065 | 0.0054 | 0.0899 | 0.0358 | 0.1010 | | 13 | | 0.0810 | 0.0065 | 0.0001 | 0.0000 | 0.0362 | 0.1042 | | 14 | | 0.0010 | 0.0000 | | | 0.0364 | 0.1044 | | Mean | 0.0090 | 0.0751 | 0.0057 | 0.0041 | 0.0867 | 0.0338 | 0.0990 | | Std Dev | 0.0020 | 0.0039 | 0.0007 | 0.0009 | 0.0017 | 0.0018 | 0.0034 | | C (95%) | 0.0013 | 0.0024 | 0.0004 | 0.0005 | 0.0011 | 0.0010 | 0.0019 | Sample | Мо | Cu | Co | Al | V | Zn | N | | Sample
1 | Mo
0.0089 | Cu
0.0238 | Co
0.0043 | Al
0.1619 | V
0.0027 | Zn
0.0049 | N
0.0060 | | - | | | | | | | | | 1 | 0.0089 | 0.0238 | 0.0043 | 0.1619 | 0.0027 | 0.0049 | 0.0060 | | 1
2
3
4 | 0.0089
0.0095
0.0095
0.0099 | 0.0238
0.0239
0.0242
0.0245 | 0.0043
0.0044
0.0049
0.0050 | 0.1619
0.1630
0.1640
0.1648 | 0.0027
0.0028
0.0029
0.0030 | 0.0049
0.0055
0.0056
0.0057 | 0.0060
0.0062
0.0064
0.0065 | | 1
2
3
4
5 | 0.0089
0.0095
0.0095
0.0099
0.0110 | 0.0238
0.0239
0.0242
0.0245
0.0246 | 0.0043
0.0044
0.0049
0.0050
0.0050 | 0.1619
0.1630
0.1640
0.1648
0.1664 | 0.0027
0.0028
0.0029
0.0030
0.0030 | 0.0049
0.0055
0.0056
0.0057
0.0057 | 0.0060
0.0062
0.0064
0.0065
0.0066 | | 1
2
3
4
5
6 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715 | 0.0027
0.0028
0.0029
0.0030
0.0030
0.0031 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074 | | 1
2
3
4
5
6
7 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720 | 0.0027
0.0028
0.0029
0.0030
0.0030
0.0031
0.0034 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757 | 0.0027
0.0028
0.0029
0.0030
0.0030
0.0031
0.0034
0.0035 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074 | | 1
2
3
4
5
6
7
8 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0112 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798 | 0.0027
0.0028
0.0029
0.0030
0.0030
0.0031
0.0034
0.0035
0.0037 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0066 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0112
0.0114 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810 | 0.0027
0.0028
0.0029
0.0030
0.0031
0.0034
0.0035
0.0037
0.0040 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0068
0.0068 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9
10
11 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0112
0.0114
0.0114 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255
0.0257 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810
0.1841 | 0.0027
0.0028
0.0029
0.0030
0.0030
0.0031
0.0034
0.0035
0.0037 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0066
0.0068
0.0070
0.0085 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9
10
11 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0112
0.0114
0.0114
0.0120
0.0121 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255
0.0257 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810
0.1841
0.1854 | 0.0027
0.0028
0.0029
0.0030
0.0031
0.0034
0.0035
0.0037
0.0040 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0066
0.0068
0.0070
0.0085
0.0089 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0114
0.0114
0.0120
0.0121 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255
0.0257
0.0258
0.0263 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810
0.1841 | 0.0027
0.0028
0.0029
0.0030
0.0031
0.0034
0.0035
0.0037
0.0040 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0066
0.0068
0.0070
0.0085 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9
10
11 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0112
0.0114
0.0114
0.0120
0.0121 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255
0.0257 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810
0.1841
0.1854 | 0.0027
0.0028
0.0029
0.0030
0.0031
0.0034
0.0035
0.0037
0.0040 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0066
0.0068
0.0070
0.0085
0.0089 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0114
0.0114
0.0120
0.0121
0.0121 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255
0.0257
0.0258
0.0263 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810
0.1841
0.1854 | 0.0027
0.0028
0.0029
0.0030
0.0031
0.0034
0.0035
0.0037
0.0040 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0066
0.0068
0.0070
0.0085
0.0089 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 0.0089
0.0095
0.0095
0.0099
0.0110
0.0111
0.0112
0.0114
0.0114
0.0120
0.0121
0.0121
0.0121
0.0121 | 0.0238
0.0239
0.0242
0.0245
0.0246
0.0247
0.0248
0.0250
0.0253
0.0255
0.0257
0.0258
0.0263
0.0265 | 0.0043
0.0044
0.0049
0.0050
0.0050
0.0051
0.0051
0.0055
0.0056
0.0058 | 0.1619
0.1630
0.1640
0.1648
0.1664
0.1715
0.1720
0.1757
0.1798
0.1810
0.1841
0.1854
0.1880 | 0.0027
0.0028
0.0029
0.0030
0.0031
0.0034
0.0035
0.0037
0.0040
0.0042 | 0.0049
0.0055
0.0056
0.0057
0.0057
0.0061
0.0066
0.0068
0.0070
0.0085
0.0089 | 0.0060
0.0062
0.0064
0.0065
0.0066
0.0074
0.0080
0.0089 | Note: $C_{(95\%)}$ is the 95% half-width confidence interval derived from the equation: $C_{(95\%)} = (t \times SD)/\sqrt{n}$ where n is the number of available values, t is the Student's t value for n-1 degrees of freedom, and SD is the standard deviation of the test results. ## Participating Laboratories Element Ltd Sheffield Analytical Services Metals Technology (Testing) Itd Anchorcert Analytical Universal Scientific Laboratory Pty Ltd Genitest, Inc Shanghai Jinyi Test Tech Co Luo Yang Copper Raghavendra SpectroMet Laboratory TCR Engineering Services Ltd Gesra Labs India Pvt Instytut Metalurgii Zelaza Tec-Eurolab **TUV Nord Czech INCDMNR-IMNR** Mineral & Metallurgical Laboratories AMG Superalloys UK Ltd Analyticka Laborator Lithea sro Middlesbrough, England Sheffield, England Sheffield, England Birmingham, England Milperra, NSW, Australia Montreal, Canada Shanghai, China Luo Yng, He Nan, China Bangalore, India Mumbai. India Chennai, India Gliwice. Poland Campogalliano, Italy Brno, Czech Republic Pantelimon, Romania Bangalore, India Rotherham, England Brno, Czech Republic UKAS accreditation 0239 UKAS accreditation 0012 UKAS accreditation 0963 UKAS accreditation 0667 NATA accreditation 0492 PJ accreditation L17-153 CNAS accreditation 0041 CNAL accreditation 0173 NABL accreditation 0371 NABL accreditation 0367 NABL accreditation 6238 PCA accreditation AB554 ACCREDIA accreditation 52 CAI accreditation L1060 Note: to achieve the above accreditation (UKAS, etc), test houses must demonstrate conformity to the general requirements of EN ISO/IEC 17025. ## **Analytical Methods Used** | ELEMENT | RESULT No. & METHOD | | | | | | | |------------|----------------------|--------------|--------------|---|--|--|--| | | ICP-AES | FAAS | | OTHER | | | | | Carbon | - | - | all | combustion (infra-red detection) | | | | | Silicon | 2-8 | - | 1, 9, 12 | photometric (molybdenum blue) | | | | | | | | 10, 11, 13 | gravimetric (perchloric acid) | | | | | Sulfur | 2-4 | - | 1, 5-13 | combustion (infra-red detection) | | | | | Phosphorus | 1-3, 5, 7-12 | - | 4, 6 | photometric (molybdenum blue) | | | | | Manganese | 1, 3-8, 10 | 11, 12 | 2, 9 | photometric (periodate) | | | | | Nickel | 2, 4, 6-9, 11-13 | 1, 10, 14 | 3, 5 | photometric (dimethyl glyoxime) | | | | | Chromium | 1, 2, 4-6, 9, 10, 12 | 7, 8, 13, 14 | 3, 11 | volumetric (ferrous ammonium | | | | | Molybdenum | 3, 5-11, 13, 14 | 2 | 1, 4, 12, 15 | photometric (thiocyanate) | | | | | Copper | 2-4, 7-9, 11, 13, 14 | 5, 6, 12 | 1, 10 | photometric (BCO) | | | | | Cobalt | 1, 3, 5-10 | 2, 4 | | | | | | | Aluminium | 3-6, 8, 9, 11, 12 | 1, 7, 10 | 2 | photometric (chrome azurol S) | | | | | | | | 13 | volumetric (EDTA) | | | | | Vanadium | 1-3, 5-8, 10, 11 | 4, 9 | | • | | | | | Zinc | 1, 3-7, 9-11, 13 | 2, 8, 12 | | | | | | | Nitrogen | - | - | 1-5, 7, 8 | inert gas fusion (thermal conductivity) | | | | | | | | 6 | photometric (Nessler reagent) | | | | #### **Notes** This Certified Reference Material has been produced and certified in accordance with the requirements of ISO 17034 and the associated guides, taking into account the requirements of the ISO Guide to the Expression of Uncertainty in Measurement (GUM). This certification is applicable to the whole of the disc. However, in accordance with normal practice for emission spectrometry, it is appropriate to avoid usage of the centre of the disc, ~8 mm diameter. This material will remain stable indefinitely, provided adequate precautions are taken to protect it from cross-contamination, extremes of temperature and atmospheric moisture. All production records will be retained for a period of 20 years from the date of this certificate. Technical support for this certification will therefore expire in January 2039, although we reserve the right to make changes as issue revisions, in the intervening period. This sample is also available in the form of chippings, for the assessment of 'wet' analytical techniques. The manufacture, analysis and certification of this product were supervised by C Eveleigh, PhD, Technical Director, MBH Analytical Ltd. The material to which this certificate of analysis refers is supplied subject to our general conditions of sale.