

Certificate of Analysis

ISO 17034

Reference Material

		•	/ /	/		/	/
Release by:	Date of Release:	0	\swarrow				,
Dr. Sabine Schröder	Luckenwalde, 18 Jun 2020	Joia	Pr	oduct	Rele	áse	

¹ Calibration and verification were carried out using standards traceable to SI-units. The value is expressed on an "as is" basis.

² The uncertainty "U" is the expanded uncertainty of the testing method for the assigned value estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). It corresponds to a level of confidence of about 95%. Coverage factor k =2.

Organisation certified to ISO 9001 | DQS 102448 and GMP (EXCiPACTTM) RM Production accredited to ISO 17034 | DAkkS D-RM-14176-01-00 | Test methods used for characterisation are accredited to ISO/IEC 17025 | DAkkS D-PL-14176-01-00

Producer: LGC GmbH Louis-Pasteur-Str. 30 D-14943 Luckenwalde Germany www.lgcstandards.com Page 1/12

Important product information

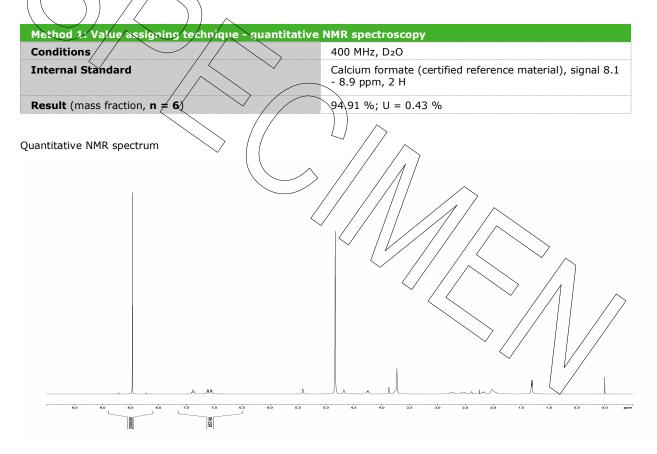
This RM is intended for laboratory use only and is not suitable for human or animal consumption.

This RM conforms to the characteristics of a primary standard as described in the ICH Guidelines. The values quoted in this Certificate of Analysis are the producer's best estimate of the true values within the stated uncertainties and based on the techniques described in this Certificate of Analysis. The production of this RM was undertaken in accordance with the requirements of ISO 17034. The identity is verified by data from international scientific literature.

Storage and handling

Before usage of the RM, it should be allowed to warm to room temperature. No drying is required, as assigned values are already corrected for the content of water and other volatile materials.

Fundle and and and	
Further content	
Assigned value	
Purity	
Identity	
Stability and homogeneity	
Revision table	
	\sim $/$ $/$ $/$ $/$ \sim \sim


Assigned value

Assay "as is": 94.91 %; U = 0.43 %

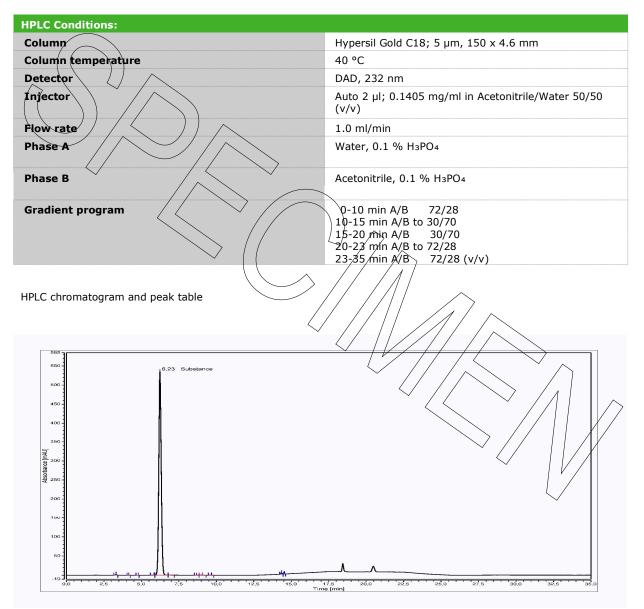
The assay "as is" is assessed by quantitative NMR spectroscopy and is equivalent to the assay based on the not-anhydrous and not-dried substance. The assay is verified by 100% method (mass balance).

The verified result lies inside our acceptance criteria, i.e. less than 1.0 % difference to assay assigning technique.

For quantitative applications, use the assay as a calculation value on the "as is basis". The uncertainty of the assay can be used for estimation/calculation of measurement uncertainty.

Method 2: Value verifying technique - 100% metho	d
100% method (mass balance) with chromatographic purity by HPLC	
Result	95.87 %

The calculation of the 100% method follows the formula:


Assay
$$\binom{\%}{=}$$
 (100% - volatile contents (%)) * Purity (%)
100%

Volatile contents are considered as absolute contributions and purity is considered as relative contribution. Inorganic residues are excluded by additional tests.

Purity

Purity by high performance liquid chromatography (HPLC)

Area percent report - sorted by signal				
Pk #	Retention time	Area	Area %	
1	3.308	0.2067	0.21	
2	4.157	0.0111	0.01	
3	4.787	0.0059	0.01	
4	5.835	0.0299	0.03	
5	6.235	99.2978	99.21	
6	6.792	0.0379	0.04	
7	8.685	0.0102	0.01	
8	9.058	0.0421	0.04	
9	9.673	0.0173	0.02	
10	14.348	0.3930	0.39	
11	14.562	0.0360	0.04	
Totals		100.0879	100.00	

The content of the analyte was determined as ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %. System peaks were ignored in calculation.

Result (n = 6)

99.20 %; U = 0.19 %

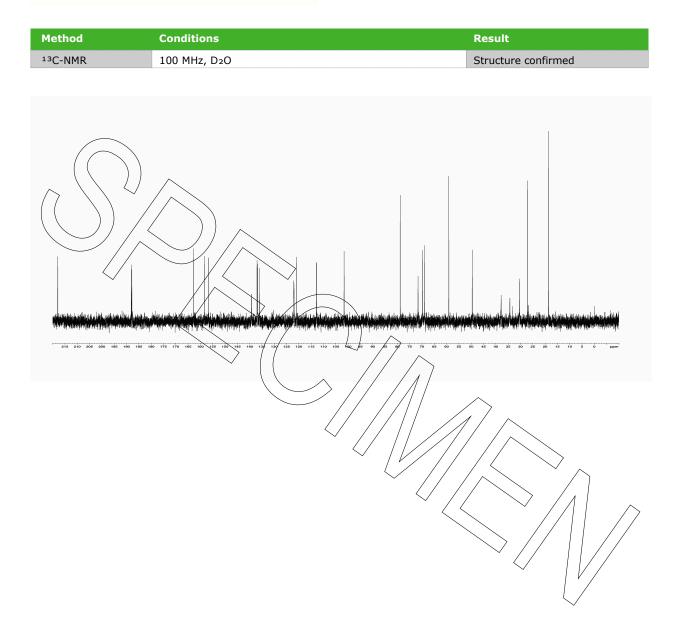
Volatile content

Water content	
Method	Karl Fischer titration
Result (n = 3)	3.29 %*; SD = 0.06 %

*not accredited testing method

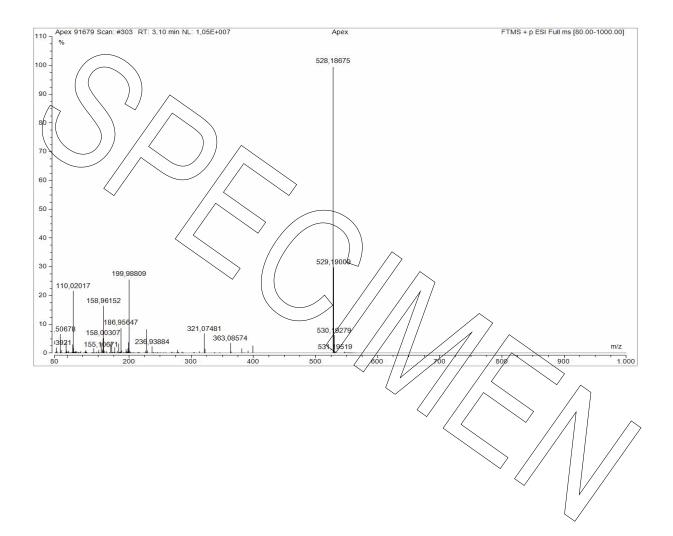

Residual solvents				
Method	¹ H-NMR			
Result (n = 1)	Sum: 0.07 %* 0.07 % Ethanol			
*not accredited testing method Inorganic residues				
Method: Sulphated ash, EP 8.2 chapter 2.4.14				
Ricenou, Scipilated dail, Li	0.2 110001 2.4.14			

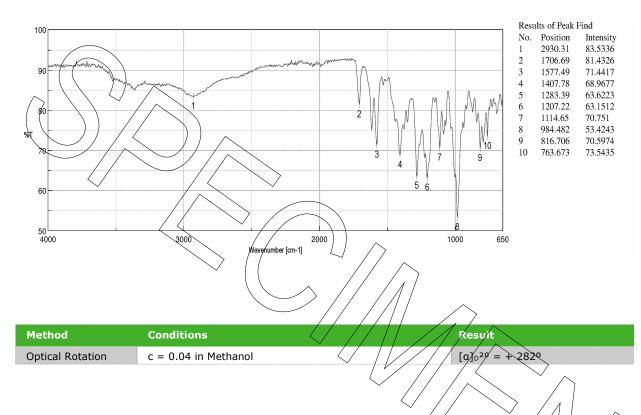
According to the available data, the presence of inorganic impurities in the reference material other than those detectable by sulphated ash is highly unlikely. Inorganic residues can be excluded by results of the sulphated ash. Therefore, no assay correction was performed for inorganic impurities.



Identity

The identity is assessed by ISO/IEC 17025 accredited testing methods.





Method	Conditions	Result
MS	3.5 kV ESI+; capillary temperature: 269 °C Theoretical value: 528.18642	Structure confirmed

Method	Conditions	Result
IR	Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy	Structure confirmed

Stability and Homogeneity

Accelerated stability studies indicate no significant instability. The given validity period is based on this data. This is backed up by additional stability testing and historical data over the range of several years.

RM quality is controlled by regularly performed quality control tests (re tests). Homogeneity assured by qualified process of preparation and verified by homogeneity testing.

Revision table

Revision	Date	Reason for revision
00	18 Jun 2020	Release of the Certificate of Analysis - initial version

Product warranties for the RM are set out in the terms and conditions of purchase.

