

ISO Certified · 9001 · 17025 · 17043 · 17034

Certificate of Analysis IARM Ti42515-18

Titanium Alloy Ti 4-2.5-1.5 / UNS R54250
Certified Reference Material

Certified Values listed in wt.% with associated uncertainties

Αl	3.99 ± 0.03	С	0.0067 ± 0.0006	Cr	0.015 ± 0.002	Cu	0.0022 ± 0.0008
Fe	1.58 ± 0.05	Н	0.0018 ± 0.0002	Mn	0.006 ± 0.001	Мо	0.0014 ± 0.0007
N	0.0026 ± 0.0005	Nb	0.0016 ± 0.0006	Ni	0.009 ± 0.001	0	0.25 ± 0.01
Si	0.011 ± 0.003	Sn	0.004 ± 0.002	V	2.53 ± 0.04	Zr	0.0019 ± 0.0007

Indicative Values listed in ppm

As (<50)	B (<10)	Bi (<10)	Ca (<50)	Cd (<10)	Co (20)	Hf (<10)
Mg (<40)	P (<50)	Pb (<10)	Pd (<80)	S (<30)	Sb (<10)	Se (<50)
Ta (<10)	Ti (91.6%)	W (<30)	Y (<30)	Zn (<10)		

Description and Intended Use

This **Certified Reference Material** is covered under the scope of accreditation to **ISO 17034** by LGC Standards - Manchester, NH. As an ISO 17034 certified reference material, appropriate use of this material will fulfill the certified reference material and traceability requirements for use in **ISO 17025** certified laboratories. This CRM may come in the form of a solid disk, chips, or powder. The intended use of this CRM may include, but is not limited to, the calibration of instruments and the validation of analytical methods.

Instructions for Use

- 1. The test surface is on the opposite side of the labeled surface, which includes the material identification. The entire thickness of the unit is certified. However, the user is cautioned not to measure disks less than 2 mm thick when using X-ray fluorescence spectrometry. Each packaged disk has been prepared by finishing the test surface using a lathe. The user must determine the correct surface preparation procedure for each analytical technique. The user is cautioned to use care when either resurfacing the disk or performing additional polishing, as these processes may contaminate the surface.
- 2. The minimum sample size for chips should be individually evaluated based on the analytical technique used; this would typically be greater than 0.1 grams.
- 3. The material should be stored in a cool, dry location when not in use.
- 4. Chips are not recommended for gas analysis.

The following data represents all pertinent information reported as it applies to the chemical characterization of this material.

	Al	As	В	С	Co	Cr	Cu	Fe	Н	Hf	Mg	Mn	Мо	N	Nb	Ni
1	3.866	0.000247	0.00006	0.0055	0.00028	0.00949	0.001233	1.457	0.001633	<0.001	0.0034	0.005	0.000683	0.001733	0.0007	0.0051
2	3.9255	< 0.005	0.001	0.006	0.0015	0.0124	0.00135	1.476	0.0017		< 0.001	0.005165	0.0008	0.002	0.001	0.0076
3	3.96		< 0.001	0.0062	0.0016	0.0127	0.0024	1.488	0.0017			0.0052	0.00087	0.00218	0.0013	0.008
4	3.962			0.0062	0.005	0.014	0.0024	1.531	0.0017			0.006	0.001	0.0022	0.00133	0.0082
5	3.9773			0.0063	< 0.001	0.014	0.003	1.5333	0.0018			0.0064	0.001	0.0024	0.0015	0.008567
6	4.004			0.0065		0.0145	0.003	1.5556	0.0019			0.007	0.001	0.0025	0.002	0.0086
7	4.00667			0.0066		0.015	<0.010	1.564	0.0021			0.0075	0.0015	0.00277	0.002	0.00892
8	4.008			0.0067		0.015		1.607	0.0022			0.008	0.002	0.002929	0.003	0.009
9	4.03			0.0077		0.01633		1.631					0.0035	0.003		0.009
10	4.03			0.00777		0.0164		1.66					< 0.001	0.0044		0.0092
11	4.0306			0.0081		0.017		1.6832								0.0095
12	4.0435					0.0203		1.7245								0.011
13	4.07															0.0121
14																
15																
Mean	3.99		0.0010	0.0067	0.002	0.015	0.0022	1.58	0.0018			0.006	0.0014	0.0026	0.0016	0.009
STDV.	0.05		0.0007	0.0008	0.002	0.003	0.0008	0.09	0.0002			0.001	0.0009	0.0007	0.0007	0.002
Certified	3.99	(<0.005)	(<0.001)	0.0067	(0.002)	0.015	0.0022	1.58	0.0018	(<0.001)	(<0.004)	0.006	0.0014	0.0026	0.0016	0.009
U _{CRM}	0.03			0.0006		0.002	0.0008	0.05	0.0002			0.001	0.0007	0.0005	0.0006	0.001
Methods	G,O,X,I	IM	I,IM	С	I,IM	G,O,X,I,IM	X,I,IM	G,O,X,I	F	IM	IM	X,I,IM	I,X,IM	F	I,X,IM	G,O,X,I,IM

	0	Р	Pb	Pd	S	Sb	Se	Si	Sn	Ta	Ti	٧	W	Υ	Zn	Zr
1	0.239	0.0008	< 0.001	0.005	0.003	0.000097	< 0.005	0.003	0.00046	0.00021	90.80	2.3913	0.00013	0.00016	<0.001	0.000293
2	0.24	0.0027		0.0075	< 0.001	0.00013		0.0089	0.002	< 0.001	91.30	2.4691	0.000163	0.001		0.0014
3	0.241	0.003		< 0.001		< 0.001		0.01	0.00208		91.66	2.484	0.00021	0.0024		0.002
4	0.2417	<0.005						0.011033	0.003		91.9045	2.49	0.0024	<0.001		0.002
5	0.244							0.012	0.003		92.10	2.5065	< 0.001			0.002
6	0.2468							0.012	0.0039			2.51				0.0023
7	0.2468							0.012	0.0051			2.525				0.0024
8	0.27							0.01386	0.008			2.526				0.003
9	0.2763							0.0164	0.0081			2.538				
10	0.2775											2.55				
11												2.59				
12												2.618				
13												2.67				
14																
15	0.05	0.000				0.00040		0.044	0.004		04.0	0.50	0.004	0.004		0.0040
Mean	0.25	0.002				0.00010		0.011	0.004		91.6	2.53	0.001	0.001		0.0019
STDV.	0.02	0.001	/ :0 004\	(.0.000)	/ .0 000)	0.00002	(:0 00E)	0.004	0.003	/ :0 004\	0.5	0.07	0.001	0.001	/ -0 004\	0.0008
Certified	0.25	(<0.005)	(<0.001)	(<0.008)	(<0.003)	(<0.001)	(<0.005)	0.011	0.004	(<0.001)	(91.6)	2.53	(<0.003)	(<0.003)	(<0.001)	0.0019
U _{CRM}	0.01	1.184	18.4	V O IM	_	18.4	18.4	0.003	0.002	V 184	V 1	0.04	VIM	V O IM	18.4	0.0007
Methods	F	I,IM	IM	X,O,IM	С	IM	IM	O,X,I,IM	I,X,O,IM	X,IM	X,I	G,O,X,I	X,IM	X,O,IM	IM	O,X,I,IM

Legend: W = Classical, C = Combustion, F = Fusion, A = AA or GFAA, I = ICP or DCP, IM=ICP-MS, D = DC Arc, O = AES, X = XRF, G = GDAES or GDMS, H = Hollow Cathode AES

Certification Laboratories

LECO Corporation St. Joseph, MI Hatfield, PA Laboratory Testing, Inc. Perryman Company Houston, PA ATI Specialty Materials, Monroe Monroe, NC Anderson Laboratories, Inc. Greendale, WI **ATI Richland Operations** Richland, WA ATI Specialty Metals, Millersburg Albany, OR LGC Standards Manchester, NH EAG Laboratories, Inc. Liverpool, NY **Dirats Laboratories** Westfield, MA NSL Analytical Services, Inc. Cleveland, OH

Certification laboratories have demonstrated performance and traceability by utilizing a variety of test methods all under the scope of ISO 17025. Some of the specific CRMs and SRMs used in the analysis of the material covered by this certificate are:

NIST 173B NIST 173D NIST 174 NIST 176 NIST 2167 NIST 2432 NIST 3126A NIST 3137 NIST 654A NIST 868 IARM 178D IARM 261B LECO 501-016

Homogeneity and Uncertainty

"Uncertainty" values, as reported adjacent to certified concentration values, are based on a 95% Confidence Interval. These estimated uncertainties include the combined effects of method imprecision, material inhomogeneity, and any bias between methods. Homogeneity data from experimental XRF results are reflected in both the overall statistics and certified data. Homogeneity samples are selected by a systematic sampling procedure. The number of samples may be determined by equation 1, where N_{prod} is the number of units produced and N_{min} is the number of samples used for homogeneity testing. These samples are arranged in a simple randomized design such that each sample is analyzed multiple times by XRF. Homogeneity may also be determined within sample using an applied version of ASTM E826. A single factor ANOVA is used to calculated uncertainty due to inhomogeneity (U_{hom}). Uncertainty of the material is calculated by equation 2, where H=U_{hom}, S= Standard deviation, t= t-value at 95% CI, and n= number of observations.

1.
$$N_{min} = \max(10, \sqrt[3]{N_{prod}})$$
 2. $U_{CRM} = \frac{\sqrt{H^2 + S^2}}{\sqrt{n}} * t$

Expiration

The certification of this material is valid indefinitely, within the uncertainty specified, provided the material is handled and stored in accordance with the instructions stated on this certificate. The certification is nullified if the material is damaged, contaminated, otherwise modified, or used in a manner for which it was not intended.

David Coler, General Manager

Analytical Reference Materials International

