

Organisation certified to ISO 9001 | DQS 102448 and GMP (EXCiPACT) Test methods used for characterisation are accredited to ISO/IEC 17025 | DAkkS D-PL-14176-01-00

Producer: LGC GmbH Louis-Pasteur-Str. 30 D-14943 Luckenwalde Germany www.lgcstandards.com Page 1/9

Product information

This RM is intended for laboratory use only and is not suitable for human or animal consumption. This RM conforms to the characteristics of a primary standard as described in the ICH Guidelines. The values quoted in this Certificate of Analysis are the producer's best estimate of the true values within the stated uncertainties and based on the techniques described in this Certificate of Analysis. The characterisation of this material was undertaken in accordance with the requirements of ISO/IEC 17025. The identity is verified by data from international scientific literature.

Storage and handling

Before usage of the RM, it should be allowed to warm to room temperature. No drying is required, as assigned values are already corrected for the content of water and other volatile materials.

Reference Material quality is controlled by regularly performed quality control tests (retests).

Further content

Assigned value Purity Identity Revision table

Assigned value

Assay "as is": 99.99 %; U = 0.32 %

The assay "as is" is assessed by carbon titration of elemental analysis and is equivalent to the assay based on the not-anhydrous and not-dried substance. The assay is verified by 100% method (mass balance). The verified result lies inside our acceptance criteria, i.e. less than 1.0 % difference to assay assigning technique.

For quantitative applications, use the assay as a calculation value on the "as is basis". The uncertainty of the assay can be used for estimation/calculation of measurement uncertainty.

Method 1: Value assigning technique - carbon t	itration of elemental analysis
Method	percentage carbon found in relation to percentage carbon as calculated for molecular formula
Results (mass fraction, n = 3)	99.99 %; U = 0.32 %
Method 2: Value verifying technique - 100% m	ethod
100% method (mass balance) with chromatographic purity by HPLC	
Result	99.29 %

The calculation of the 100% method follows the formula:

Assay (%) = (100 % - volatile contents(%))

Purity (%) * 100 %

Volatile contents are considered as absolute contributions and purity is considered as relative contribution. Inorganic residues are excluded by additional tests.

Mikromol[®]

Purity

Purity by High Performance Liquid Chromatography (HPLC)

HPLC Conditions:	
Column	Hypersil Gold C18, 5 µm, 150 x 4.6 mm
Column temperature 40 °C	
Detector	DAD, 225 nm
Injector	Auto 4 µl; 0.105 mg/ml in Acetonitrite/Water 50/50 (v/v)
Flow rate	1.0 m//min
Phase A	Water, 0.1 % H₃PO₄
Phase B	Acetonitrile, 0.1 % H ₃ PO ₄
Gradient program	0-5 min A/B 75/25 5-8 min A/B to 20/80 8-10 min A/B to 75/25 10-15 min A/B 75/25 (v/v)
HPLC chromatogram and peak table	
400 300 200 100	
0 4,56 4,5	

Mikromol

Area percent repo	rt - sorted by signal		
Pk #	Retention time	Area	Area %
1	2.38	1116	0.03
2	2.63	1073	0.03
3	2.88	3940	0,11
4	3.82	1660	0.05
5	4.56	3436652	99.46
6	4.90	10727	0.31
Totals		3455168	100.00

The content of the analyte was determined as ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %. System peaks were ignored in calculation.

Result (n = 3)

99.46 %;/U = 0.18 %

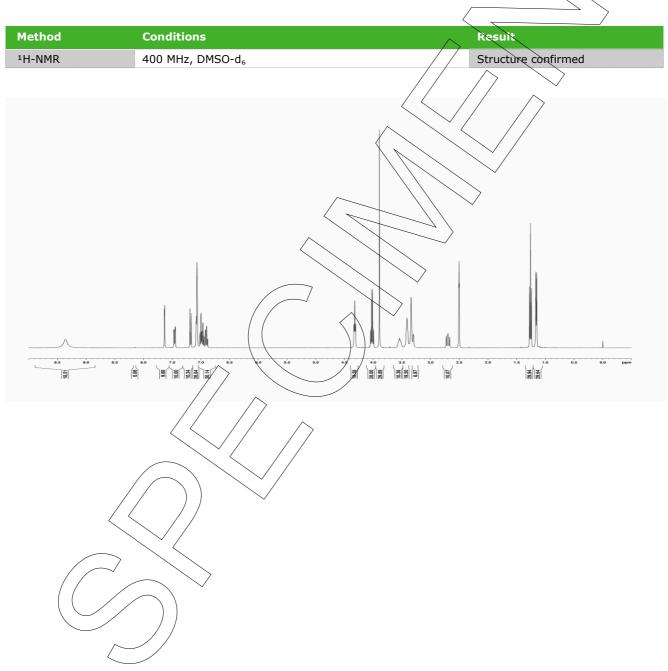
Volatile content

Water content		\sim
Method		Karl Fischer titration
Result (n = 3)		0.17 %*; SD/= 0.01 %
/	/ / /	

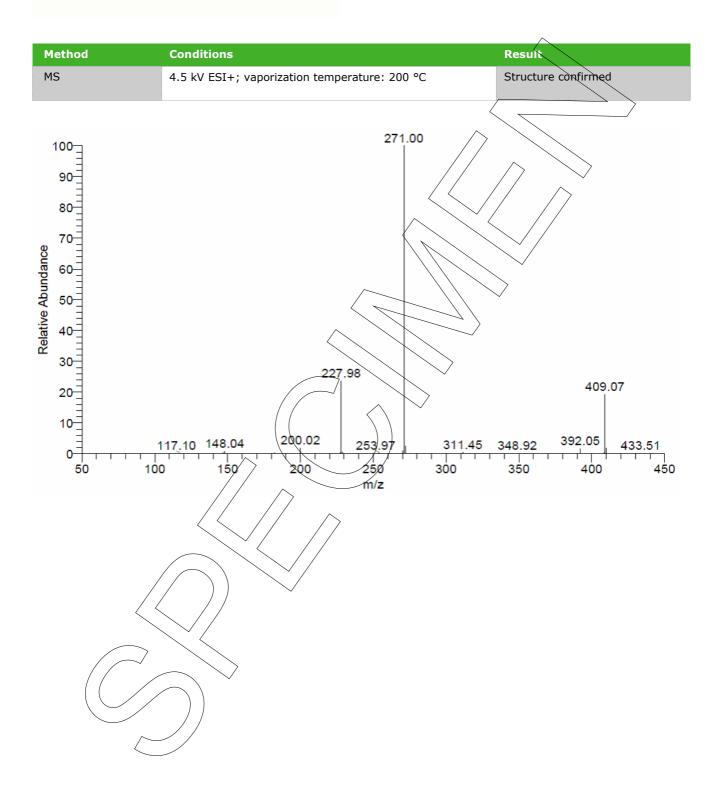
*not accredited testing method/

Residual solvents	
Method	रम-NMR
Result ($n \neq 1$)	No significant amounts of residual solvents were detected (< 0.05 %).*
*not accredited testing method	

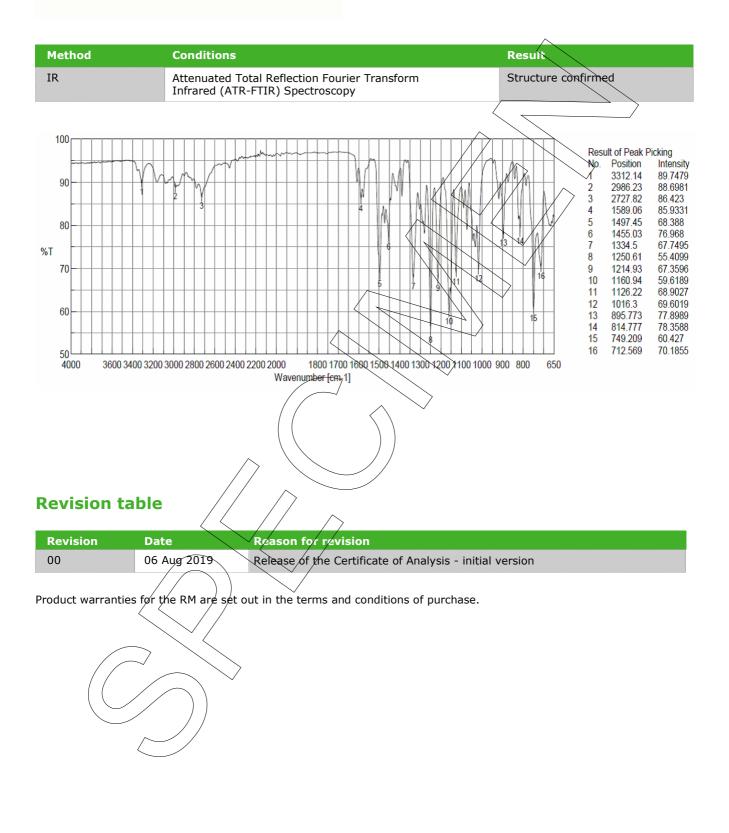
Inorganic residues


Method: Elementary analysis

Inorganic residues can be excluded by elementary analysis (CHN).



Identity


The identity is assessed by ISO/IEC 17025 accredited testing methods.

