

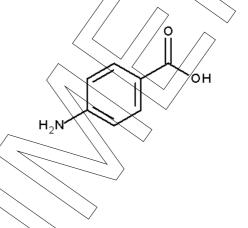
Certificate of Analysis

Characterisation methods are accredited according to

ISO 17025

Reference Material

Product name


4-Aminobenzoic Acid

Product code MM0094.03 W1011194

CAS number Appearance 150-13-0 white solid

Molecular weight Melting point (DSC)

137.14 188 °C

Assay¹ "as is" **100.04 %**

Uncertainty² U **0.3** %

Intended Use: Use for identification and quantification. The assay is verified by a second testing method.

Date of shipment: 02/Sep 2019

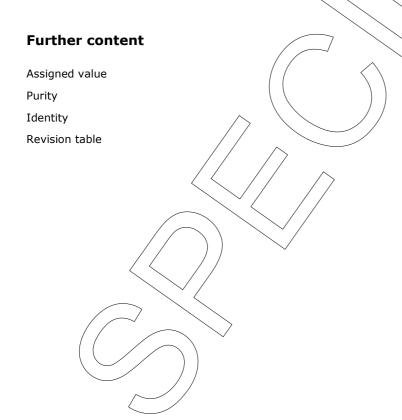
Producer confirms that this reference material (RM) meets the specification detailed on this Certificate of Analysis for **two years** from the date of shipment, provided the substance is stored under the recommended conditions unopened in the original container.

Release by: Date of Release:	0	
Dr. Sabine Schröder Luckenwalde, 15 Jul 2019	Toia	Product Release

¹ Calibration and verification were carcied out using standards traceable to SI-units. The value is expressed on an "as is" basis.

² The uncertainty "U" is the expanded uncertainty of the testing method for the assigned value estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). It corresponds to a level of confidence of about 95%. Coverage factor k = 2.

Product information


This RM is intended for laboratory use only and is not suitable for human or animal consumption.

This RM conforms to the characteristics of a primary standard as described in the ICH Guidelines. The values quoted in this Certificate of Analysis are the producer's best estimate of the true values within the stated uncertainties and based on the techniques described in this Certificate of Analysis. The characterisation of this material was undertaken in accordance with the requirements of ISO/IEC 17025. The identity is verified by data from international scientific literature.

Storage and handling

Before usage of the RM, it should be allowed to warm to room temperature. No drying is required, as assigned values are already corrected for the content of water and other volatile materials.

Reference Material quality is controlled by regularly performed quality control tests (retests).

Assigned value

Assay "as is": 100.04 %; U = 0.32 %

The assay "as is" is assessed by carbon titration of elemental analysis and is equivalent to the assay based on the not-anhydrous and not-dried substance. The assay is verified by 100% method (mass balance).

The verified result lies inside our acceptance criteria, i.e. less than 1.0 % difference to assay assigning technique.

For quantitative applications, use the assay as a calculation value on the "as is basis". The uncertainty of the assay can be used for estimation/calculation of measurement uncertainty.

Method 1: Value assigning technique - carbon titration of elemental analysis

Method

percentage carbon found in relation to percentage carbon as calculated for molecular formula

Results (mass fraction, n = 3)

100.04 %; U = 0.32 %

Method 2: Value verifying technique - 100% method

100% method (mass balance) with chromatographic purity by HPLC

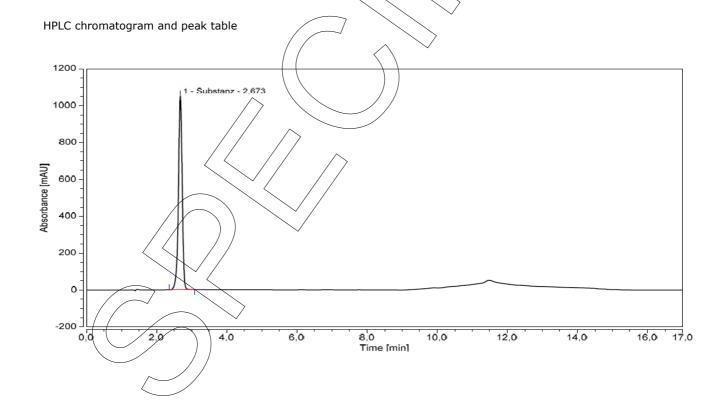
Result

99.89 %

The calculation of the 100% method follows the formula:

Assay (%) = (100 % - volatile contents (%))

Purity (%)


Volatile contents are considered as absolute contributions and purity is considered as relative contribution. Inorganic residues are excluded by additional tests.

Purity

Purity by High Performance Liquid Chromatography (HPLC)

HPLC Conditions:	
Column	LiChrospher 60 RP-select B; 5 µm, 125 x 4.0 mm
Column temperature	40 °C
Detector	DAD, 220 nm
Injector	Auto 2 μl; 0.158 mg/ml in Acetonitrite/Water 50/50 (v/v)
Flow rate	1.0 ml/min
Phase A	Water, 0.1% H ₃ PO ₄
Phase B	Acetonitrile, 0.1% H ₃ PO ₄
Gradient program	0-6 min A/B 95/5
	6-9 min-A/B to 50/50
	9-12 min A/B to 95/5
	12-17 min A/B 95/5 (v/v)

Area percent report - sorted by signal			
Pk #	Retention time	Area	Area %
1	2.673	131.152	100.00
Totals		131.152	100.00

The content of the analyte was determined as ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %. System peaks were ignored in calculation.

Result (n = 3)

100.00 %; U = 0.18 %

Volatile content

Water content	
Method	Karl Fischer titration
Result (n = 3)	0.06 %*; SD = 0.01 %

^{*}not accredited testing method

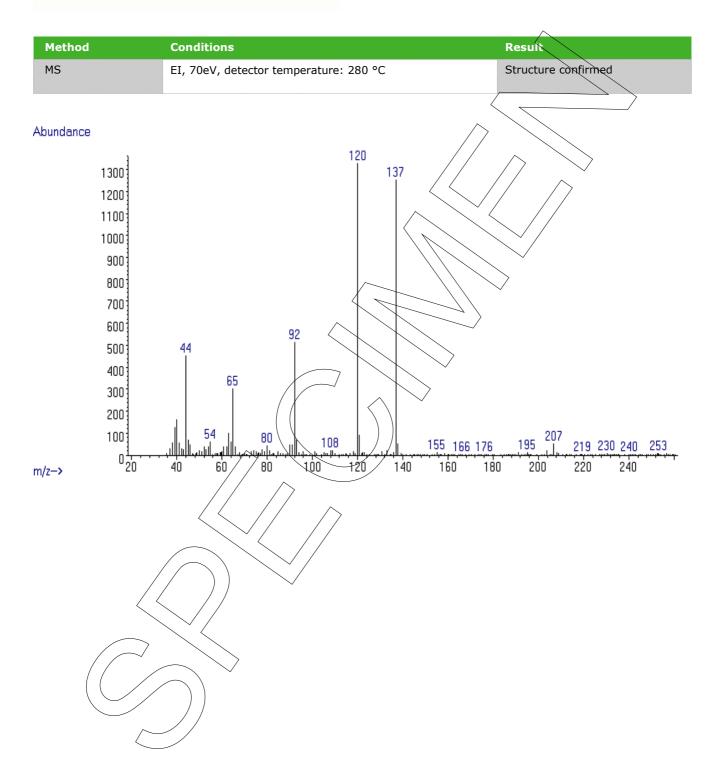
Residual solvents	
Method	1/H-NMR
Result (n = 1)	Sum: Ø.05 %* 0.04 % Acetic acid; 0.01 % Acetonitrile

^{*}not accredited testing method

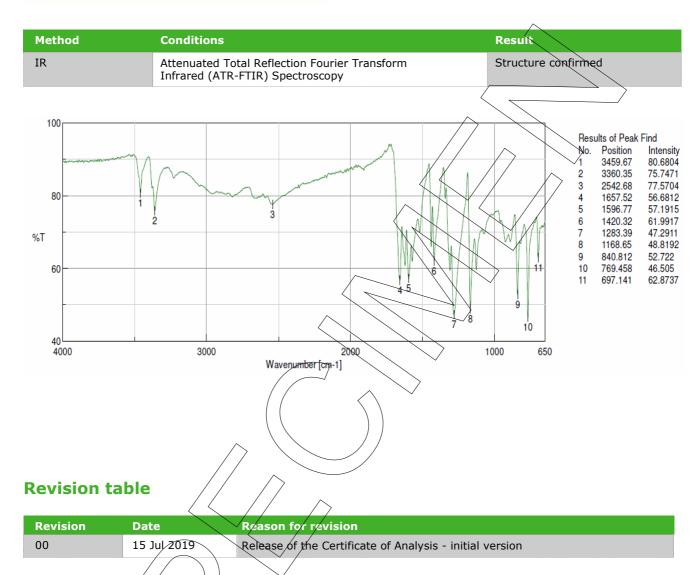
Inorganic residues

Method: Elementary analysis

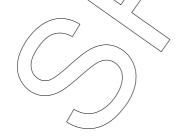
Inorganic residues can be excluded by elementary analysis (CHN).


LGC GmbH, Louis-Pasteur-Str. 30, D-14943 Luckenwalde, Germany

MM0094.03 Lot number W1011194



Identity The identity is assessed by ISO/IEC 17025 accredited testing methods. Method Conditions Resuit Structure confirmed ¹H-NMR 400 MHz, DMSO-d₆



Product warranties for the RM are set out in the terms and conditions of purchase.

