

Release by: Date of Release:	0	
Dr. Sabine Schröder Luckenwalde, 16 Jul 2019	Joia	Product Release

¹ Calibration and verification were carried out using standards traceable to SI-units. The value is expressed on an "as is" basis.

² The uncertaint, "U" is the expanded uncertainty of the testing method for the assigned value estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). It corresponds to a level of confidence of about 95%. Coverage factor k = 2.

Organisation certified to ISO 9001 | DQS 102448 and GMP (EXCiPACT) Test methods used for characterisation are accredited to ISO/IEC 17025 | DAkkS D-PL-14176-01-00

Producer: LGC GmbH Louis-Pasteur-Str. 30 D-14943 Luckenwalde Germany www.lgcstandards.com Page 1/8

Product information

This RM is intended for laboratory use only and is not suitable for human or animal consumption. This RM conforms to the characteristics of a primary standard as described in the ICH Guidelines. The values quoted in this Certificate of Analysis are the producer's best estimate of the true values within the stated uncertainties and based on the techniques described in this Certificate of Analysis. The characterisation of this material was undertaken in accordance with the requirements of ISO/IEC 17025. The identity is verified by data from international scientific literature.

Storage and handling

Before usage of the RM, it should be allowed to warm to room temperature. No drying is required, as assigned values are already corrected for the content of water and other volatile materials.

Reference Material quality is controlled by regularly performed quality control tests (retests).

Further content

Assigned value Purity Identity Revision table

Assigned value

Assay "as is": 99.97 %; U = 0.31 %

The assay "as is" is assessed by carbon titration of elemental analysis and is equivalent to the assay based on the not-anhydrous and not-dried substance. The assay is verified by 100% method (mass balance). The verified result lies inside our acceptance criteria, i.e. less than 1.0 % difference to assay assigning technique.

For quantitative applications, use the assay as a calculation value on the "as is basis". The uncertainty of the assay can be used for estimation/calculation of measurement uncertainty.

Method 1: Value assigning technique - carbon titration of elemental analysis		
Method	percentage carbon found in relation to percentage carbon as calculated for molecular formula	
Results (mass fraction, n = 3)	99.97 %; U = 0.31 %	
Method 2: Value verifying technique - 100% method		
100% method (mass balance) with chromatographic purity by HPLC		
Result	99.38 %	
The calculation of the 100% method follows the formula:		
	\wedge \sim	

Purity (%)

100 %

Assay (%) = (100 % - volatile contents (%))

Volatile contents are considered as absolute contributions and purity is considered as relative contribution. Inorganic residues are excluded by additional tests.

Mikromol

Purity

Purity by High Performance Liquid Chromatography (HPLC)

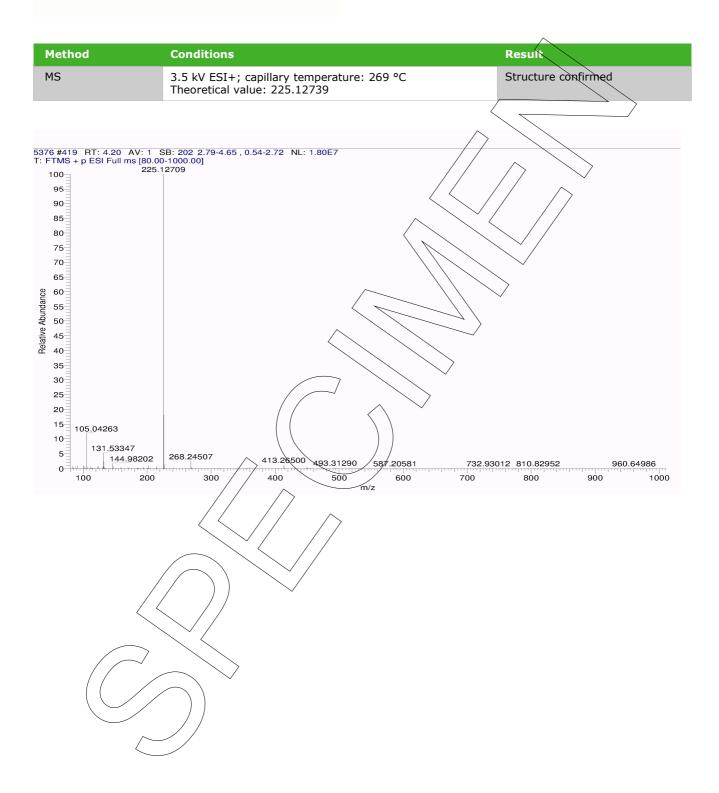
HPLC Conditions:	
Column	Cortecs UPLC C18/+) 1.6 μm, 75 x 2.1 mm
Column temperature	40 °C
Detector	DAD, 210 nm
Injector	Auto 1 µl; 0.056 mg/ml in Acetonitrite/Water 50/50 (v/v)
Flow rate	0.5 m//min
Phase A	Water, 0.1% HCOOH
Phase B	Acetonitrile, 0.1% HCOOH
Gradient program	0-1 min A/B 98/2 1-4 min A/B to 2/98 4-5 min A/B to 98/2 5-6 min A/B 98/2-(v/v)
HPLC chromatogram and peak table	
000 000 000 000 000 000 000 000	4.32 Substance

Area percent report - sorted by signal			
Pk #	Retention time	Area	Area %
1	4.035	0.0916	0.56
2	4.323	16.3143	99,44
Totals		16.4059	100.00

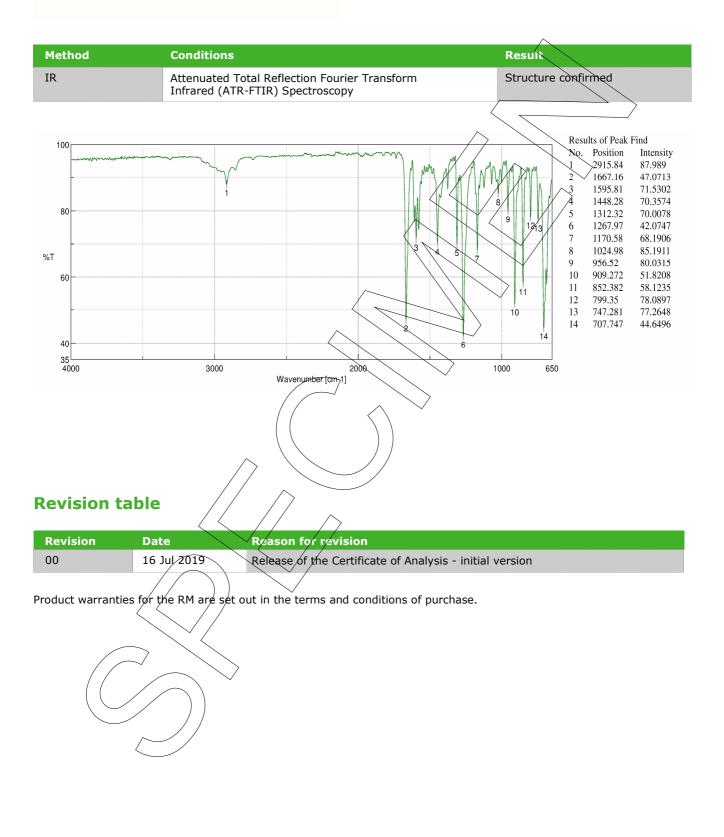
<

The content of the analyte was determined as ratio of the peak area of the analyte and the cumulative areas of the purities, added up to 100 %. System peaks were ignored in calculation.

Result (n = 3)	99.44 %; U = 0.18 %	
Volatile content		
Water content		
Method	Karl Fischer titration	
Result (n = 3)	0.06 %*; SD = 0.01 %	
*not accredited testing method		
Residual solvents		
Method	¹ H-NMR/	
Result (n = 1)	No significant amounts of residual solvents were detected (< 0.05 %).*	
*not accredited testing method		
Inorganic residues		
Method: Elementary analysis		
Inorganic residues can be excluded by elementary analysis (CHN).		


Identity

The identity is assessed by ISO/IEC 17025 accredited testing methods.


Method	Conditions	Result
¹ H-NMR	400 MHz, CDCl ₃	Structure confirmed
	/	
9.5 9.0	as ao 7,5 7,0 6,5 6,0	25 20 15 10 02 00 ppm
		5.5 5.0 4.4 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 6.0 ppm [5]
		\sim
	\sum	
	\sim	
	<pre>/))</pre>	

Mikromol

