

## CERTIFICATE OF ANALYSIS



Isotopic Standard

## **Lithium Isotope Standard**

Product #: VHG-LIS6LIZ-100

Matrix: 2% HNO<sub>3</sub> Lot #: 1000801-2

| Element         | Concentration and Uncertainty |           |           |  |  |  |
|-----------------|-------------------------------|-----------|-----------|--|--|--|
| <sup>6</sup> Li | Certified W/V                 | 100 μg/mL | ± 1 μg/mL |  |  |  |

| Isotopic Composition |           |                           |  |         |           |                           |  |
|----------------------|-----------|---------------------------|--|---------|-----------|---------------------------|--|
| Isotope              | Abundance | Relative Std<br>Error (%) |  | Isotope | Abundance | Relative Std<br>Error (%) |  |
| <sup>6</sup> Li      | 95.0      |                           |  | ₹Li     | 5.0       | -                         |  |

This solution is intended for use as a calibration or reference standard for inductively coupled plasma mass spectrometry (ICP-MS) where known values for isotopic abundance are required.

**Certification:** VHG standards are manufactured and certified under a quality control system that is accredited to both **ISO 9001** and **ISO/IEC 17025**. This standard was prepared to a nominal concentration of 100µg/mL by gravimetric methods. Matrix components (see "Matrix") were of high purity grade reagents and all dilutions were done with filtered (0.22µm), 18 M-ohm deionized water. Certified concentrations are based upon gravimetric procedures. The uncertainty associated with the certified concentrations is +/- 1% relative, which is the sum of the estimated errors due to the purity of the raw materials, the gravimetric reparation of the solution and transpiration through the container wall. Atomic abundance and/or ratio values are based upon raw material values and are verified using ICP-MS analysis.

**Tools:** The balances used in the preparation of VHG CRMs are calibrated regularly with traceability to NIST. All volumetric dilutions are performed in class A glassware which is recalibrated regularly according to NIST recommended procedures. Measurement of standard preparation temperature was done using a calibrated thermometer maintained under internal procedure 4.11-A.

**Recommendations:** VHG guarantees the accuracy of this solution for **18 Months** from the certification date shown below, provided it is kept tightly capped and stored under normal laboratory conditions. We recommend that the analyst: (1) mix the solution by gentle shaking immediately prior to use, (2) use only pre-cleaned containers and transfer-ware, (3) make dilutions using certified volumetric class A flasks and pipettes, and, (4) dilute with the same matrix as the original standard.

VHG Labs, Inc.

Chuck Goudreau, Certifying Officer

See Exp. date on container
Certification Date

REFERENCE MATERIALS PRODUCER CERT #2848. CHEMICAL TESTING

LGC waives all responsibility for any damages resulting from the usage and/or implementation of the products/data described herein.

## VHG Custom Standards are Traceable to the Following NIST SRMs:

| Analyte | Aq. SRM | MO SRM | Analyte            | Aq. SRM | MO SRM | Analyte            | Aq. SRM | MO SRM |
|---------|---------|--------|--------------------|---------|--------|--------------------|---------|--------|
| Ag      | 3151    | 1077a  | Hf                 | 3122    | _      | S                  | 3154    | 2770   |
| Al      | 3101a   | 1075a  | Hg                 | 3133    | 3133   | Sb                 | 3102a   | 3102a  |
| As      | 3103a   | 3103a  | Но                 | 3123a   | _      | Sc                 | 3148a   | 3148a  |
| Au      | 3121    | _      | ln                 | 3124a   | 3124a  | Se                 | 3149    | 3149   |
| В       | 3107    | 3107   | K                  | 3141a   | 3141a  | Si                 | 3150    | 1066a  |
| Ва      | 3104a   | 1051b  | La                 | 3127a   | 3127a  | Sm                 | 3147a   | _      |
| Ве      | 3105a   | 3105a  | Li                 | 3129a   | 3129a  | Sn                 | 3161a   | 1057b  |
| Bi      | 3106    | 3106   | Lu                 | 3130a   | _      | SO <sub>4</sub> -2 | 3181    | _      |
| Br-     | 3184    | _      | Mg                 | 3131a   | 3131a  | Sr                 | 3153a   | 3153a  |
| Ca      | 3109a   | 3109a  | Mn                 | 3132    | 3132   | Та                 | 3155    | _      |
| Cd      | 3108    | 1053a  | Мо                 | 3134    | 3134   | Tb                 | 3157a   | _      |
| Ce      | 3110    | 3110   | Na                 | 3152a   | 1069b  | Te                 | 3156    | _      |
| CI-     | 3182    | 1818a  | Nb                 | 3137    | _      | Th                 | 3159    | _      |
| Со      | 3113    | 3113   | Nd                 | 3135a   | _      | Ti                 | 3162a   | 3162a  |
| Cr      | 3112a   | 1078b  | Ni                 | 3136    | 1065b  | TI                 | 3158    | 3158   |
| Cs      | 3111a   | _      | NO <sub>3</sub> -  | 3185    | _      | Tm                 | 3160a   | _      |
| Cu      | 3114    | 1080a  | Р                  | 3139a   | 3139a  | U                  | 3164    | _      |
| Dy      | 3115a   | _      | Pb                 | 3128    | 1059c  | V                  | 3165    | 1052b  |
| Er      | 3116a   | _      | Pd                 | 3138    | _      | W                  | 3163    | 3163   |
| Eu      | 3117a   | _      | PO <sub>4</sub> -3 | 3186    | _      | Y                  | 3167a   | 3167a  |
| F-      | 3183    | _      | Pr                 | 3142a   | _      | Yb                 | 3166a   | _      |
| Fe      | 3126a   | 1079b  | Pt                 | 3140    | 3140   | Zn                 | 3168a   | 3168a  |
| Ga      | 3119a   | _      | Rb                 | 3145a   | _      | Zr                 | 3169    | 3169   |
| Gd      | 3118a   | _      | Re                 | 3143    | _      |                    |         |        |
| Ge      | 3120a   | _      | Rh                 | 3144    | 3144   |                    | _       | _      |