


Certificate of Analysis IARM Ti64-18

Titanium Alloy 6-4 / UNS R56400 Certified Reference Material

Certified Values listed in wt.% with associated uncertainties

AI	6.52 ± 0.07	С	0.034 ± 0.006	Cr	0.013 ± 0.006	Fe	0.19 ± 0.01
Н	0.0031 ± 0.0005	Мо	0.004 ± 0.002	Ν	0.025 ± 0.006	Ni	0.011 ± 0.002
0	0.181 ± 0.006	Si	0.011 ± 0.005	Sn	0.003 ± 0.002	V	4.08 ± 0.03

					Indica	tive \	/alues listed i	n pp	m				
As	(<50)	В	(<100)	Bi	(<50)	Са	(<50)	Cd	(<10)	Со	(4)	Cu	(20)
Hf	(<100)	Mg	(<100)	Mn	(10)	Nb	(40)	Ρ	(<50)	Pb	(<100)	Pd	(<10)
-	(. (00)	•			(•		-	$\langle \mathbf{O} \rangle$.			$\langle \mathbf{O} \rangle$

Description and Intended Use

This CRM may come in the form of a solid disk, chips, or powder. The intended use of this CRM may include, but is not limited to, the calibration of instruments and the validation of analytical methods.

Instructions for Use

- 1. The test surface is on the opposite side of the labeled surface, which includes the material identification. The entire thickness of the unit is certified. However, the user is cautioned not to measure disks less than 2 mm thick when using X-ray fluorescence spectrometry. Each packaged disk has been prepared by finishing the test surface using a lathe. The user must determine the correct surface preparation procedure for each analytical technique. The user is cautioned to use care when either resurfacing the disk or performing additional polishing, as these processes may contaminate the surface.
- 2. The minimum sample size for chips should be individually evaluated based on the analytical technique used; this would typically be greater than 0.1 grams.
- 3. The material should be stored in a cool, dry location when not in use.
- 4. Chips are not certified for Oxygen analysis.

Analytical Reference Materials International • 276 Abby Road • Manchester, NH 03103IARM-Ti64-18-FTelephone (603) 935-4100 • Fax (603) 935-4101 • www.ARMI.com • ARMI@LGCgroup.com6/12/20181 / 2

The following data represents	pertinent information reported	ed as it applies to the chemical	characterization of this material.

							I									
	AI	As	В	С	Ca	Со	Cr	Cu	Fe	Н	Hf	Mg	Mn	Мо	Ν	Nb
1	6.405	0.00055	0.00058	0.01805	<0.001	0.00032	0.0077	0.00103	0.16	0.00247	<0.005	0.0024	0.00058	0.002	0.0108	0.001
2	6.4633	0.00088	<0.005	0.02989	<0.005	0.00045	0.008	0.002	0.1795	0.00277	<0.001	<0.005	0.00081	0.0030	0.02	0.0010
3	6.47128	<0.001	<0.001	0.0312	<0.005	<0.005	0.008	0.00208	0.18386	0.0028	<0.01	<0.001	0.001	0.00313	0.0224	0.001
4	6.525	<0.005	<0.01	0.0332		<0.01	0.0092	0.003	0.187	0.003		<0.01	0.00199	0.004	0.024	0.0021
5	6.533			0.03627		<0.001	0.00994	0.003	0.18935	0.003284			0.002	0.005	0.02613	0.01
6	6.5433			0.037		<0.001	0.01148	<0.001	0.18967	0.00335			<0.005	0.00603	0.03	<0.001
7	6.5444			0.04			0.013	<0.005	0.192	0.004			<0.001		0.03177	
8	6.55			0.04347			0.02094	<0.01	0.195						0.03326	
9	6.5817						0.029		0.196							
10	6.61								0.199							
11									0.214							
12																
13																
14																
15																
Mean	6.52	0.0010		0.034		0.00040	0.013	0.0020	0.19	0.0031			0.0010	0.004	0.025	
STDV.	0.06	0.0002		0.008		0.00009	0.007	0.0008	0.01	0.0005			0.0007	0.002	0.007	
Certified	6.52	(<0.005)	(<0.01)	0.034	(<0.005)	(0.0004)	0.013	(0.002)	0.19	0.0031	(<0.01)	(<0.01)	(0.001)	0.004	0.025	(0.004)
U _{CRM}	0.07			0.006			0.006		0.01	0.0005				0.002	0.006	
Methods	I,X,O	IM,I	IM,I	С	IM,I	IM,I	IM,I,X	IM,I,X	IM,I,X,O	F	IM,I	IM,I	IM,I,X	IM,I,X	F	IM,I,X

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.17 0.00 0.174 0.003 0.1771 <0.0 0.18 <0.0 0.18 <0.0 0.185 <0.0 0.1851 <0.0 0.1913 <0.0	399 <0.001 005 <0.01 001	0.00036 0.001 <0.0005 <0.001 <0.001	0.00012 0.00018 0.01495 <0.001	<0.001 <0.005	0.004 0.007 0.01257 0.01396 0.014 0.01405	0.0019 0.0019 0.002 0.00353 0.005 0.00533	0.00018 0.0002 <0.005 <0.01 <0.001	88.87 88.887 88.99 89.023 89.223	4.002 4.0233 4.05 4.05723 4.0631 4.07667 4.082 4.0837 4.10	0.00012 0.00022 <0.005 <0.001 <0.01	<0.001 <0.005 <0.01 <0.01	0.00005 0.001 <0.005 <0.01	0.0007 0.00273 <0.005 <0.001 <0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1771 <0.0 0.18 <0.0 0.18 <0.0 0.185 0.1881	005 <0.01 001	<0.0005 <0.001	0.01495	<0.005	0.01257 0.01396 0.014	0.002 0.00353 0.005	<0.005 <0.01	88.99 89.023	4.05 4.05723 4.0631 4.07667 4.082 4.0837	<0.005 <0.001	<0.01	<0.005	<0.005 <0.001
4 0.00957 0 5 0.00997 0 6 0.01 0 7 0.01203 0 9 0.01247 0 10 0.0152 12	0.18 <0.0 0.18 <0.0 0.185 0.1881	001	<0.001			0.01396 0.014	0.00353 0.005	<0.01	89.023	4.05723 4.0631 4.07667 4.082 4.0837	<0.001			<0.001
5 0.00997 0 6 0.01 0 7 0.011 0 8 0.01203 0 9 0.01247 0 10 0.013 1 12 12 0	0.18 <0.0 0.185 0.1881			<0.001		0.014	0.005			4.0631 4.07667 4.082 4.0837		<0.01	<0.01	
6 0.01 0 7 0.011 0. 8 0.01203 0. 9 0.01247 0. 10 0.013 11 0.0152 12 12 12 12	0.185 0.1881	005	<0.001					<0.001	89.223	4.07667 4.082 4.0837	<0.01			<0.01
7 0.011 0. 8 0.01203 0. 9 0.01247 0. 10 0.013 11 12 12 12	0.1881					0.01405	0.00533			4.082 4.0837				
8 0.01203 0. 9 0.01247 0. 10 0.013 11 11 0.0152 12										4.0837				
9 0.01247 10 0.013 11 0.0152 12	0.1913													1
10 0.013 11 0.0152 12										4 10				1
11 0.0152 12													1 1	
12										4.134				1
										4.17				1
														1
13														1
14														1
15										4.00			 	
	0.181					0.011	0.003		89.0	4.08				1
	0.007			(0.00)	(0.005)	0.004	0.002	(0.0000)	0.1	0.05	(0,0000)	(0.005)	(
	0.181 (<0.0	005) (<0.01)	(<0.001)	(<0.02)	(<0.005)	0.011	0.003	(0.0002)	(89.0)	4.08	(0.0002)	(<0.005)	(<0.01)	(<0.01)
	0.006					0.005	0.002			0.03				
Methods IM,I,X,O	F IM	1,I IM,I	C	IM,I	IM,I	IM,I,X	IM,I,X	IM,I	I,X,O	I,X,O	IM,I		IM,I	IM,I,X

Certification Laboratories

NSL Analytical Services, Inc. Massachusetts Materials Research, Inc. EAG Laboratories, Inc. Connecticut Metallurgical Inc. ATI Specialty Materials, Monroe Cleveland, OH West Boylston, MA Liverpool, NY East Hartford, CT Monroe, NC Dirats Laboratories IMR Test Labs Applied Technical Services, Inc. VHG Labs

Westfield, MA Lansing, NY Marietta, GA Manchester, NH

Certification laboratories have demonstrated performance and traceability by utilizing test methods under the scope of ISO 17025 or have shown competence through a proficiency testing program. Some of the specific CRMs and SRMs used in the analysis of the material covered by this certificate are:

Homogeneity and Uncertainty

"Uncertainty" values, as reported adjacent to certified concentration values, are based on a 95% Confidence Interval. These estimated uncertainties include the combined effects of method imprecision, material inhomogeneity, and any bias between methods. Homogeneity data from experimental XRF results are reflected in both the overall statistics and certified data. Homogeneity samples are selected by a systematic sampling procedure. The number of samples may be determined by equation 1, where N_{prod} is the number of units produced and N_{min} is the number of samples used for homogeneity testing. These samples are arranged in a simple randomized design such that each sample is analyzed multiple times by XRF. Homogeneity may also be determined within sample using an applied version of ASTM E826. A single factor ANOVA is used to calculated uncertainty due to inhomogeneity (U_{hom}). Uncertainty of the material is calculated by equation 2, where H=U_{hom}, S= Standard deviation, t= t-value at 95% CI, and n= number of observations.

1.
$$N_{min} = \max(10, \sqrt[3]{N_{prod}})$$

2. $U_{CRM} = \frac{\sqrt{H^2 + S^2}}{\sqrt{n}} * t$

Expiration

The certification of this material is valid indefinitely, within the uncertainty specified, provided the material is handled and stored in accordance with the instructions stated on this certificate. The certification is nullified if the material is damaged, contaminated, otherwise modified, or used in a manner for which it was not intended.

David Coler, General Manager

Analytical Reference Materials International

Analytical Reference Materials International • 276 Abby Road • Manchester, NH 03103IARM-Ti64-18-FTelephone (603) 935-4100 • Fax (603) 935-4101 • www.ARMI.com • ARMI@LGCgroup.com6/12/20182 / 2